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SUMMARY

The present understanding of shock-layer radiation in the low density regime, as appropri-

ate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation

and radiation transport, the hypersonic flows are divided into three groups: weakly ionized,

moderately ionized, and highly ionized flows. In the light of this division, the existing labo-

ratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation

computation methods for the three regimes in hypersonic flows is presented. The assessment

is conducted by comparing experimental data against the values predicted by the physical

model.
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average vibrational energy per unit mass at equilibrium, J/kg
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rate constant, cmU/sec

absorption coefficient, crn- 1

constant, equation 2

number density, em -3
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translational temperature, K
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characteristic temperature of dissociation, K

electron temperature, K

excitation temperature (eq. 1), K

rotational temperature, K

vibrational temperature, K

vibrational quantum number

relaxation time deduced from the Landau-Teller equation, sec



I. INTRODUCTION

The physics of the compressedgas layer behind a shock wavesurrounding a hypersonic
object flying through a planetary atmospherehave been studied intensely since the early
1960's (refs. 1-18).. The intenseheat generatedas a result of the compressionis distributed
in the shock layer volume through a thermochemical relaxation process. The translational
temperature immediately behind the shockmay be ashigh as20,000to 60,000K. Due to the
high velocity of the vehicle the characteristic flow time through the shock layer becomescom-
parable to the relaxation time constantsof thesethermochemicalprocessesand, as a result, a
major volume of the shock layer is in astate of thermochemicalnonequilibrium. The radiation
from the volume in thermochcmical noncquilibrium is enhanced,about 2-15times higher than
its equilibrium value (ref. 16). In suchan environment, the nonequilibrium radiation plays a
larger role in the radiative heating of the vehiclebody. In order to properly design the heat
shields of such vehiclesone must be able to compute the radiative and convective heat load.
The convectiveheat transfer rates canbc estimatedwith confidenceprovided the surfacecat-
alytic reactivity is known (ref. 19). The nonequilibrium radiation phenomenais still not well
understood, especially,at high altitudes (> 50 km) and at velocities above 10.0km/sec and
below 6.0 km/sec.

There are three basic featureswhich are unique to nonequilibrium radiation:

1. For a given transition, the absorption coefficient, to, and the emission coefficient, e must

satisfy the principle of detailed balance unique to that particular transition, independently

of all other transitions occurring concurrently

8Ahc exp(-hc/AkT_x)

e=aBa(Te_), Ba(Tex)= As 1-exp(-hc/,_kT_) (1)

where B,x(T_x) is the Planck function dictated by the excitation temperature for a par-

ticular transition. This condition is satisfied, whether the gas is in radiative equilibrium

or not. If radiative equilibrium exits, the total absorption coefficient, ,¢t = _ _ and the

total emission coefficient, ct = _ c are also related by the same excitation temperature.

In nonequilibrium radiation a single cxcitation temperature does not exist.

.

.

During the relaxation process a state of chemical nonequilibrium exits. Tile populations of

individual radiating species are functions of time (or distance), and must bc determined by

.solving a set of chemical reaction rate equations simultaneously with the thermodynamic

and gasdynamic equations.

The internal energ# distribution for the molecules as welt as the atoms can not be uniquely

defined. The molecular populations in individual rotational states is defined by a ro-

tational temperature, TR. The distribution electron energy is defined by an electron

temperature, T_. The populations in atomic and molecular electronic levels can not be

defined by a single temperature. Illstcad, thcy are determined by solving another set of

2



rate equations under the so-calledquasi-steady-state(QSS)approximation (ref. 7). Re-
cent computations (ref. 20) suggestthat the vibrational populations of the moleculescan
not be determined by assuminga singlevibrational temperature, Tv and, in principle at

least, should be determined by solving a set of master equations (rcf. 20). Even in the

simplest models, one must define a vibrational temperature for the vibrational degree

of freedom of the molecules. Also individual molecular species may not have the same

vibrational temperature (ref. 21).

During the Apollo era to understand the basic physics of nonequilibrium radiation and

compute the radiative load to the vehicle, the radiative phenomena were studied extensively

through laboratory (refs. 1-3) and flight tests (refs. 10-14). In a concerted effort in the labo-

ratory, shock tube and ballistic range tests were conducted along with theoretical calculations.

Shock tubes were operated (refs. 1-3) at shock velocities up to 10 km/sec. There was a lower

limit on the gas density in these tests because of intrinsic limitations of a shock tube, such as

boundary layer growth and short test times. At the shock velocity of 7 km/sec, the lowest ini-

tial pressure ahead of the shock wave was 0.05 Torr (,,_70 km altitude). At the shock velocity

of 10 km/sec, the lowest pressure was 0.1 Torr (_65 km altitude). One of the major findings

of the laboratory data was that the luminosity of air is zero immediately behind the shock,

rises to a peak, then, decays to a smaller value and achieves a plateau (fig. 1). This plateau

suggests the onset of a steady state (very close to equilibrium). This nonequilibrium radiation

overshoot was interpreted as being duc to the thermochemical nonequilibrium. The molecules

with high binding energy (--&.8 eV) requirc a long time to dissociate, as the molecule cascaded

towards the dissociation limit by way of collisional energy transfers. Before it could dissociate

to its equilibrium value, the temperature rose to a higher level than its equilibrium value,

causing the luminosity overshoot. However, the first attempts to theoretically simulate the

radiation overshoot were unsuccessful. The model should allow the reaction rates to be small

at the initial stage of the relaxation process and, then, to grow exponentially near the final

stages of the process. If one uses the conventional formulation for reaction rate, K,

Reaction rate, K = CTn exp(-Td/T) (2)

with the translational temperature as the controlling temperature, then the maximum radia-

tion occurs immediately behind the shock, where the temperature is maximum. Attempts to

attribute the incubation period to the nonequilibrium vibrational excitation have also failed,

because peak in radiation occurs much later in time than predicted by the vibrational relax-

ation theory using Landau-Tcller formulation (ref. 22). Over the years several investigators

(refs. 23-28) have suggested that the dissociation and vibrational relaxation processes be

coupled together in order to explain this long incubation period to the peak radiation.

Recently, Park (rcf. 29), was able to theoretically simulate the slow relaxation and radi-

ation overshoot for shock velocities in the range of 6-10 km/sec using a multi-temperature

model (Tv = T_ _ TI_ = T), by suggesting that an average temperature, T_ = v/T_v controls

the reaction rates in equation (2). The model also suggests that at very high temperatures

the vibrational relaxation changes its character from Landau-Teller type to a slower diffusion

type (ref. 29).
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Sincechemicaland thermodynamic processesin the relaxation zoneare binary, i.e. they
result from two body collisions, the intensity of radiation from such reactions is proportional
to the density and the thicknessof the relaxation zone is inversely proportional to the den-
sity. Consequently, as long as the binary mechanism dominates, the integrated radiation flux

emitted from such a nonequilibrium region remains independent of density at a given velocity

(refs. 2 and 3). This property is called the "binary scaling" law of nonequilibrium radiation.

There arc four mechanisms which may depress, either the nonequilibrium or equilibrium ra-

diative load to a body, and thus violate the binary scaling law: 1) Truncation occurs (ref. 2)

whcn the width of the nonequilibrium region is thicker than the shock detachment distance,

2) collisional limiting 0'ef. 8) reduces the radiation intensity at low densities when the colli-

sions to maintain the population of excited states against the depletion by emission are not

sufficient, 3) radiation cooling occurs when energy loss by radiation is significant, and 4) the

gas is not always optically thin and reabsorption in the gas may occur.

Electrons play a dominant role in the excitation and emission process. Electrons are

about a million times more efficient than neutral particles and few hundred times than ions in

causing electronic excitations of atoms and molecules by collisions. Furthermore, experiments

show (ref. 30) that high electronic states, which primarily contribute to the emission, remain

in equilibrium with the electrons described by a local Saha equation. Thus, for singly ionized

species (Ne "-" Nions), the population of excited electronic states is maintained proportional

to the square of the electron number density. In this case

Spontaneous radiative power = htJAi,jNig_ "._ hvAi,jN2_ (3)

where Ai,j is the Einstein transition probability for spontaneous emission for the i ---, j tran-

sition, N, is the number density of the ith electronic level and gi is the degeneracy of the ith

level. The electrons not only affect the line radiation but also the continuum radiation as

well. The continuum radiation, either due to free-free transition (c< N 2) or due to bound-free

recombination process (cx ATe) or due to density packed bound-bound line radiations (_ N2),

can add up to a significant portion of the total radiative power, especially in an optically thick
environment.

Thus it is seen that the nonequilibrium radiation is affected not only by the thermo-

chemical nonequilibrium in the media, but also by the vehicle size and flight altitude. Also, to

a certain degree, the nature of radiation depends upon the electron density. Todate, various

radiation models have been reported in the literature, each of which capture some of the

important features of nonequilibrium radiation. This survey paper examines the capabilities

of these models and summarizes the status of our present day understanding of the physics

of noncquilibrium radiation. As an example, the results obtained from the computer program

named NonEquilibrium Air Radiation (NEQAIR) written by Park (ref. 7) at NASA Ames

Research Center, Moffett Field, California, U.S.A., will be referred most frequently, The

available experimental data, from laboratories as well from flight experiments is surveyed,

Finally some of the results obtained using thesc models are discussed and compared with the

experimental data. The nonequilibrium radiation as a whole is divided into three groups:
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(i) Radiation at low ionization, Ne/N < 0.01%.

(ii) Radiation at moderate ionization, 30/o > Ne/N > 0.01%.

(iii) Radiation at high degree of ionization, Ne/N > 3%.

II. PHYSICS OF NONEQUILIBRIUM RADIATION

A. Atomic Radiation

In order to calculate the total radiation from a bound-bound optical transition (i ---* j)

one must compute the spontaneous radiation (o(Ni), the stimulated radiation (cx N_), and

the absorbed radiation (_ Nj). This requires the knowledge of number densities, Ni and Nj.

As mentioned before Ni and Nj are related by a local excitation temperature (eq. (1)). Under

nonequilibrium conditions the number density of any given state, 'i' of an atom or molecule

changes with time and is a sum of the diffusion rate and the net chemical production rate.

The chemical processes consist of collisional and radiative transitions. For internal states,

however, the chemical production as well as chemical removal rates are usually much larger

than the diffusion term. This leads to the QSS approximation

production
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collisionat radiative
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hcrc Are is the electron number density (the colliding particle). K(i, j) is the rate coefficient

for i --* j electronic transition, and K(i, c) and K(c, i) are the rate coefficients for i _ free

and free _ i transitions, respectively. The rate coefficients are obtained by the integration

of corresponding cross sections over collision energy from the threshold value to infinity. In

general the colliding particles can bca heavy particle and an electron. However, since the

electrons are several orders of magnitudes more effective in causing electronic or vibrational

transitions than heavy particles, for these transitions the contributions of heavy particles may

be neglected (rcf. 32). Determining the number densities, Ni, by solving the QSS Equations

(cq. (4)), in essence, we assume a multi electronic temperature model for each species while

computing the radiative emission (and/or absorption).



In general,of the threeatomic radiative processes,namely: 1) line radiation, 2) free-bound
radiation, and 3) free-freeradiation, the radiative intensity from the first two are affectedby
the populations of all internal electronic states. The free-freeradiation is not affectedby the
internal state populations. For the computation of the line atomic radiation and free-bound
continuum the populations of all electronicstates aredetermined by solving a set of equations
like equation (4). The transitions that needto be consideredin eq. (4), can be divided into
four groups:

i. Transitions among high states (i k 4). A QSS condition is assumed to exist among

these states. The rate coefficients for the radiative transitions can be calculated by

using references 33 and 34. The collisional rate coefficients are derived by Bates

(ref. 35) using the semi-classical theory of Gryzinsky (refs. 36 and 37) for a hydrogen
force field. The collisional rates of Bates can bc used for N and O with an effective

quantum number i.e. replacing EH/n 2 by (Eoc - E(i)). Here EH is the ionization

potential for hydrogen and n its principle quantum number.

. Transition among low lying states (i _< 3). A QSS state does not exist among these

states. However, they maintain a state of equilibrium among themselves and their

populations can be described by a Boltzmann distribution. In order to compensate

for the large departure from a hydrogenic structure for the three low lying states

in atoms such as nitrogen, a correction factor can bc used (scc ref. 38). Within the

framework of Gryzinski's theory this correction factor applies only to the initial states

and is independent of the final state. However, at low densities and highly nonequitib-

rium regimes the correction factor for a singlet-to-singlet transitions may be different

than for a singlet-to-multilet transition. Thus the applicability of Gryzinski's theory

to the low density high velocity regimes needs to be further researched.

3. Transitions from the ground state to the high excited state. Experimental data for

collisional excitation are available (refs. 38 40).

, Transitions from the low lying states (i < 3) to the high states. Due to lack of

additional data the cross section for this transition can be assumed to be the same

as for the transition from ground to the high excited states.

In a collision dominated plasma, when the contribution of radiative transition to equation

(4) is not significant, the population distribution of the electronic states becomes independent

of electron number density and insensitive to the excitation rate coefficients, or to errors in

their estimates. A collision-dominant condition exits in one of the following situations:

a. Optically thick gas.

b. Optically thin gas with sufficiently high number of electrons.

K(i,j) >> ,z > j and i,j >_ 4 (s)
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For nitrogen this conditions is satisfied for Ne > 1018 c rn-3.

c. Partially optically thick gas. For a given optical depth there exists an upper limit

for the electron number density (< 101Scm -3) when a partially thick gas becomes

collisionally dominated. For example at T = 12000 K in nitrogen this limit is Ne >

101%m -3. If the far ultraviolet radiation is cut off, then the limit for nitrogen is

Are :> 1014cm -3.

Of course at electron densities below the limiting value, the radiative transitions must

also bc included in the calculations.

The integrated intensity from spontaneous emission is distributed over a spectral line

shape. Most realistic line shape can bc approximated by thc Voigt line shape (ref. 41),

which combines the Lorentzian and Gaussian line shapes into one. The Gaussian shape is

produced by the thermal motion of atoms. Overall line shape, however, is due to combined

effects of natural broadening, Stark broadening (electron collisions), Van der Waals broadening

(other species collisions) and rcsonancc broadening (same species collisions). At low densities

of present interest, the line shapes can be assumed to be symmetrical about the eenterline

(ref. 41) and unshifted by collisions. However, in certain cases, asymmetric line profiles due

to Van der Waals broadening may occur (ref. 42).

When the electron number density is in excess of 3% (:>9.0 km/scc) Kramcrs' radiation,

namely: free-free, produced by deceleration of an electron in the electric field of an ion or

atom, and free-bound, produced by capture of an electron by an ion, also becomes important.

B. Molecular Radiation

The molecular spectra for any given electronic transition consists of a vibrational band

system with a rotational structure. In order to computc the radiation from each of the rota-
tional lines one must determine the rotational populations in each of the involved vibrational

and electronic states. The excitation energies of molecular rotation are usually very small. For

example, the temperature equivalent for oxygen is 2.1 K and for nitrogen is 2.9 K. Therefore,

at temperatures of our interest, the quantum effects of molecular rotation are not pronounced.

The rotational lcvels tend to cstablish an equilibrium among themselves very quickly, for ex-

ample, within 20 collisions in nitrogen, and their distribution can be described by a rotational

temperature, T/_. Because of a "near-classical" nature of the rotation, a vigorous exchange

between the translational and rotational degree of freedom occur during collisions. As a re-

sult, the rotational temperature tends to follow thc translational temperature. However there

arc experimental cvidenecs (refs. 4 and 5) indicating that the rotational temperature may lag

behind the translational temperature for quite some distance in a flow behind a strong shock.

Thus, for example in general one needs to define TR and T separately.

To first order, the nonequilibrium vibrational population may be described by a single

vibrational temperature, Tv. However, recent computations show that during relaxation the

vibrational states, with the excepl ion of lowest levels, maintain a high degree of nonequilibrium
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among themselvesand it is not possible to define a single vibrational temperature for all
the vibrational levels. Therefore, wheneverit is possible, one should usemulti-vibrational
temperature description of the gasmedium.

Once the vibrational temperature Tv, the rotational temperature T_, the electron tem-

perature, Te and the translational temperature, T are given, all that remains is to determine

the populations in the electronic states. To do this, a set of equations similar to equation (4)

arc solved. An effective rate coefficient K(i,j) for i ---* j electronic transition is defined by

summing up the rate coefficient for one rotational-state-to-rotational-state transition, K(J, jr)

over all final vibrational and rotational states of ith electronic level and averaged over the ini-

tial vibrational and rotational states of the jth electronic level (ref. 7). It is also assumed

that the electrons arc ineffective in causing rotational quantum changes and the cross section

for the J --* J_ transition is the product of the Prank-Condon factor and an electronic part,

independent of either vibrational or rotational quantum numbers. The excitation cross sec-

tion for air molecules has been measured (refs. 40 and 43-46) for Tv = T = T_ = 300 K for

almost all transitions in which the initial state is the electronic ground state and are of the

order of 10-1tern 2, except for N +, for which it is about 10-16cm 2. This room temperature

data can bc extended to any arbitrary combination of T, Tv, TR and Te using the standard

fornmlation (ref. 7). However, extending the room temperature data to the high velocity low

density (U_ > 10.0 km/sec, Pl < 0.1 Torr) by using these standard formulations may lead to

errors. For transitions in which the ground state is not the initial state, the cross sections are

not known and they are assumed to be the same as the known cross sections with the same

final state.

For conditions where the electron mole fraction is at least 0.01%, the electrons play the

dominant role in the excitation of electronic states (eq. (4)). However at the low end of electron

densities, the excitation by heavy-particle impact may be significant.

Some electronic states, such as the C3II_, state of N2(upper state of N2(2 +) band system)

and the B3_u state of 02 (upper state of Schumann-Runge Band System), need special treat-

ment. They lie above the dissociation limit. Because they _c so high, collisional excitation

from the lower electronic states is unlikely. Instead, they are populated by collisions between

atoms through a process called predissociation. Depopulation is by the reverse process of

prcdissociation and by radiative decay. By applying the principle of detailed balance (ref. 7)

one obtains the populations in the two states. As mentioned above, the populations of other

states are determined by solving the QSS equations in NEQAIR.

From each electronic state of a molecule, dissociation by heavy particle impact occurs

(electrons arc less efficient in this regard). Available ratc data (ref. 47) can bc utilized in

deducing the rate coefficients for collisional dissociation from various electronic states.

The radiative transition probabilities for molecules are also available in the literature

(rcfs. 48 and 49).



III. NONEQUILIBRIUM CHEMISTRY

A. Reaction Rates

The gas medium, around hypersonic vehicles or in a hypersonic nozzle, most often, is a

mixture of atoms and molecules. Under extreme temperature, they undergo a complex chain

of chemical as well as thermodynamic interactions. As mentioned before, under nonequilib-

rimn the populations of individual spccics, which are numerous, remain functions of time (or

distance). For synthetic air (78% N2, 22%02) computations, one has to consider about 11

dominant species involved in about 22 different chemical and radiative processes and for a

more realistic air composition (78% N2, 21% 02, 0.93% A and 0.03% CO2), one needs to

consider 19 species with 38 processes. In order to compute the source term (net production

rate) associated with the respective mass conservation equation for each species, one needs

to know the reaction rates, as a rule, in a form similar to eqllation (2). The chemical rate

data are available for only a few of these reactions from experiments; for the rest of the re-

actions educated guesses arc made. Park (rcfs. 50 and 51), through an extensive study of

flight and shock tube data, has compiled a set of chemical rate data (table 1, cq. (2)), which

seems to simulate the thermochemical nonequilibrium in air, for shock velocities in the range

of 6.0- 10.0 km/sec (with moderate ionization), reasonably well. However, whenever the ther-

modynamic conditions change above a certain level, such as, the degree of ionization increases

or new species arc introduced (Martian atmosphere, for example) (rcf. 52), the reaction rate

data set invariably needs reexamination.

Another point of major conccrn is thc nature of controlling temperature in equation (2)

to bc used in high temperature noncquilibrium conditions. Park's average temperature model

(ref. 29) for dissociative reactions (table 1) seems to work well in predicting the nonequilibrium

phenomena up to shock velocities of 10 km/sec. The model allows dissociation of a molecule

by both centrifugal tearing, caused by rotational motion, and vibrational breaking. The

square root of T (the model assumes TR -----T) is a measure of the velocity associatcd with

the rotational motion, whereas the square root of Tv is a measure of the velocity associated

with the vibrational motion at the midpoint of its oscillations. The product conceptually

represents an average energy level in phase space. In reactions where electrons are involved as

the product of the reaction, it is recommended that Tc is used as the controlling temperature,

such as in ionization or recombination processes (table 1).

In the absence of a sufficient number of electrons, the electronic excitation occurs pri-

marily by collisions with heavy particles. Based on shock tube experiments, Lotz (ref. 53) has

postulated that the cross section for electronic excitation by neutral species is zero at threshold

and varies approximately as _ a.Logc(y)/y, whcrc a is a constant on the order of 1016cm 2 and

y is the ratio of the translational kinetic energy of the colliding particles to the threshold. For

ionic molecules Lotz proposes that tile cross-section is a constant (ref. 53). As an example of

electronic excitation by heavy particles, the formation of excited NO molecules at low veloci-

ties in air (rcfs. 47, 54, and 55) can bc cited. The three body reactions N+O+M _ NO* +M
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leadsto the excitation of the A and B electronicstates of NO, which are responsiblefor NO-_'
and NO-_ band systems.

B. Multi-Temperature Model

We haveseenthat while computing nonequilibrium radiation, onehas to conduct a rigor-
ous book keeping of all the electronic levels,possibly a scoreof vibrational levels,and locally
defined rotational, vibrational and electron temperatures. For flow computations, sucha rig-
orous exercisefor the internal energyquanta is prohibitively expensiveand is not necessary.
A simplified approach may be adequate. In this approach:

lJ In addition to translational energy, we recognize three separate pools of internal

energy: 1) rotational energy, 2) vibrational energy, and 3) electronic energy. All the

species contribute to these common pools of internal energy. In a more rigourous

approach each species may be assigned to separate pools of energies, which in turn

can be summed up to provide a global set of internal energies.

. Assign each pool of energy an associated distribution function and the respective

temperature i.e. define the vibrational temperature Tv, rotational temperature TR,

electron temperature Te, electronic temperature Tel_ct and translational tempera-

ture T.

3. Account for the interaction among the five pools of energy during the relaxation

process.

Rotational relaxation Due to the "classical" nature of the rotational energy, the

rotational degree of freedom participates in a vigorous energy exchange with the translation

mode. With that in mind, it is often customary to assume T = TR. However, in a more

accurate model one may define a Landau-Teller type relaxation for the rotational energy:

Ot TLR
(6)

where cR is rotational energy defined at a rotational _:cmpcrature, TR. The rotational relax-

ation parameter, VLU has been measured experimentally for molecules like hydrogen (refs. 56

and 67). Data on air molecules are unavailable, primarily because the rotational tempera-

ture follows the translational temperature very closely and experimentally it is difficult to

distinguish between them.

Vibrational relaxation The vibrational relaxation rate proposed by Millikan and

White (ref. 58) shows that the Landau-Teller formulation is accurate at temperatures up to

_5000 K, and holds reasonably good to approximately ,_ 8000 K, although the equation tends

to slightly underestimate the relaxation times at the higher temperature range. For higher

temperatures the formula needs to be modified to take account of two phenomena: (ref. 7)
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1) a limiting value of the crosssection and 2) the diffusive nature of vibrational relaxation.
The first modification arisesfrom the fact that the Millikan and White correlation implies an
unrealistically large crosssection for vibrational relaxation at high temperatures. The correc-
tion is introduced in the form of a limiting crosssection av and an effective relaxation time,

T_ is defined:
1

TtL = TL -_ Tc, T c --

<c> avN

where < c > is the thermal speed of the molecule and N the number density of the colliding

particle. The numerical value of the a, is an unknown quantity and is adjusted to satisfy

the existing experimental data. For air molecules, for example, a_ = 10-17(50,000/T) 2 gives

satisfactory results (see fig. 2).

The correction for the diffusive nature of the vibrational relaxation is suggested as follows:

(rcf. 59)

Oe,(T,)cgt _ C_E(T)._ev(TV)r.L ( TiTi - TviTv),-1 (7)

Landau-Teller correction factor

where the subscript i refers to the initial condition immediately behind the shock wave. The

parameter s is an increasing function of Ti, the maximum value being 3.5. A bridging formula

is proposed in the following form

s = 3.5 cxp(-5OOO/Ts)

where T, is the translational-rotational temperature immediately behind the normal shock

wave.

A more accurate approach would be a bi-modal vibrational model. Theoretical inves-

tigations (ref. 20) show that during nonequilibrium the vibrational population can not be

described by a single temperature. The high vibrational levels tend to equilibrate among

themselves and the frcc state very early during the relaxation, and are not in equilibrium with

the other states. The lower levels follow the Landau-Teller type relaxation. This necessitates

the introduction of a bi-modal vibrational model. This model may even account for the ex-

cess energy, which still rcmains unaccounted for in the present day hypersonic flow equations

(ref. 60).

Electron and electronic temperature Electrons thermalize themselves very quickly;

however, they do not exchange any appreciable energy by collision with heavy particles. There-

fore, the electrons, whose distribution is described by an electron temperature, remain loosely

coupled to the heavy species through vibrational and electronic excitation processes. As dis-

cussed earlier, the electrons dominate the electronic excitation process, and if one assigns

an electronic temperature to the excited electronic populations, Telect, then the assumption

Te _ Tetect may be justified.

Early researchers suggested that a strong coupling exists between the electronic degree

of freedom and thc vibrational mode (ref. 61). This hypothesis is in accordance with the
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fact that the radiation is quenchedmore effectively by molecular than by atomic collisions
(ref. 32). Faizullov (ref. 62), while using the sodium line reversal technique, found that the
populations of excited sodium atoms were strongly coupled with the vibrational temperature
of thc nitrogcn molecule. There areother indications (ref. 63) that a strong coupling between
the electronic and vibrational modesexists.

The electronsarealsovery efficient in causingvibrational energytransitions in molecules.
In suchclcctron-vibration (e-V) processes,multiple-level transitions alsotakeplacewith signif-
icant frequency,contrary to the Landau-Teller formulation. Lee (ref. 64), using the excitation
and de-excitation rate coefficientsbasedon computational quantum chemistry (ref. 65), theo-

retically analyzed the role of electrons in the vibrational excitation of nitrogen molecules and

has suggested the following expression for the time constant for the e-V process

log(per_) = 3.91(logT_)2 _ 30.36(logT_)

+48.90, 1000K<Te_<7000K

lo.q(p_r_) = 1.30(lo.qTe)2 _ 9.09(logTe)

+ 5.58, 7000 g < T_ < 50000K

(s)

where pC is electron pressure and Te is the time constant. Te is to be used in the equation (7)

in place of T_ for the e-V process.

As it is clear from the above discussion that in order to simplify the computation, in

certain cases, Tc = Tez_ct = Tv is acceptable.

IV. COMPUTER CODES AND FLOW COMPUTATIONS

Park's (rcf. 7) NEQAIR program incorporates most of the physics discussed in Section II

using the basic structure of a code written by Arnold ct al. (ref. 31) Two computer codes have

been written to couple the one-dimensional fluid equations with the nonequiIibrium radiation

physics (NEQAIR): 1) STRAP (Shock Tube RAdiation Program) for the shock tube flow be-

hind a normal shock, and 2) SPRAP (Stagnation Point RAdiation program) for the stagnation

streamline in the shock layer over a bhmt body. Park (refs. 59 and 66) has extensively used

these codes to reproduce the experimental data (refs. 1-3, 9-15, and 67) taken in shock tubes,

ballistic ranges, and flight experiments at shock velocities in the range of 6 10 km/sec. Park

was able to reproduce most of the laboratory data, namely the 1) rotational temperature,

2) electronic cxcitation temperature, 3) temporal variation of radiation intensities, 4) char-

actcristic relaxation times, and 5) the ratio of noncquilibrium - to equilibrium-radiative heat

fluxes (with the exception of vibrational temperature, which will be discussed later). In order

to do that it was necessary to adjust the reaction rates, for which no experimental or analytical

data are available, by trial and error until a good agreement bctwecn the theory and experi-

ment was achieved. A set of reaction rates for air constituents used in these computations is

given in table 1.
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Recently these program have been improved by Whiting (ref. 69) and combined into a
single code. The improvements are: 1) generalization of chemical reaction schemes,2) im-
provement in the accuracyof partition functions and radiation calculation schemes,and 3) in-
clusion of the specicsC, CO, CN, and C2 in the excitation calculations. All of thesecodes
assumeT_zec-- T_ -- Tv and Tn -- T in the fluid computationswith the averagetemperature,
Ta = Tv/T_v in the rate equations (eq. (2)). Several two- and three-dimensional fluid codes

coupled with NEQAIR have been developed over the years. Two of the most notable of these

are a program by Candler (ref. 70) and the program LAURA (Langley Aerothcrmodynamic

Upwind Relaxation Algorithm) by Gnoffo (ref. 71).

Chung Park (ref. 72) working on "Cassini" project extended the NEQAIR code to include

methane, hydrogen and argon in order to simulate entry into Titans's atmosphere. His fluid

code used a three temperature model i.e. Te = T_ec _ Tv. Chung Park has also conducted

emission radiation measurements in gas mixtures simulating Titan's atmosphere and has com-

pared them with his theoretical results. Nelson (ref. 73) also investigated the nonequilibrium

radiation from Titans's atmosphere by extending the SPRAP code to a host of hydrocarbons

as constituents.

For the simulation of low velocity rocket flights (_3.5 km/sec) Levin (ref. 54) has modified

the NEQAIR code to include the electronic excitation of NO by heavy particlc collisions and

has compared the theoretical rcsults with the flight data from the Bow Shock Ultraviolet

Rockets (refs. 74 and 75) flights.

V. COMPUTATIONAL RESULTS: DISCUSSION

A. Air Radiation

(i) Low ionization flows (N_/N < 0.01%)- At low velocities (<5.0 km/sec), as dis-

cussed in Section III, the electron population may not be great enough to dominate the elec-

tronic and vibrational excitation process, and the heavy particle collisions play a major role.

Since the excitation rates to discrete electronic levels of atoms and molecules by heavy par-

ticlc collisions are not very well known, modelling of noncquilibrium radiation in this regime

is difficult. Strong coupling of vibrational energy with the electronic states of atoms and

molecules (refs. 32 and 61 63) further complicate the physics of nonequilibrium radiation. In

Levin et al's computations (ref. 54) the electronic excitation of NO was modelled as a three

body recombination proccss. The modified NEQAIR code was used to simulate the radiation

recorded aboard the Bow Shock Ultraviolet Rocket flight experiment (ref. 74). The results

show that the low altitude data (.._40 km, .-_ equilibrium regime) agree with the computed

results. However, the predicted nonequilibrium radiation using a multi-temperature model

(TR _ T) was lower by as much as 4 orders of magnitude (at _60 km).

A possible explanation can bc providcd as follows. In reccnt shock tube experiments at

Calspan (ref. 76), conducted at shock velocities in the 3.22-3.83 km/sec range, it was found

that in the abscncc of NO, the vibrational temperature of N2 (infrared measurements at 5 #)
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shows a slow approach to its equilibrium value, in a manner NEQAIR predicts. In other
words, the modelling of N2 excitation in NEQAIR is reasonably accurate. As soon as NO
forms in the flow, the vibrational temperature shoots up rapidly much faster than exhibited
by N2 vibrational temperature. It seemsthat NO moleculesare probably produced in a
vibrationally excited state. Possiblemechanismsmay be the formation of NO in reactions
where the kinetic and chemicalenergiesare directly convertedinto vibrational energyduring
the collisions. The vibrationally excited, ground electronicNO moleculesmay in turn interact
to produceexcited A-state molecules.This hypothesisseemsto be in good agreementwith the
experimental findings about the strong couplingsbetweenvibrational and electronic states.

This area of molecular excitation needsfurther work. Without a better understanding
of thesephenomena,our capability to compute nonequilibrium radiation at low velocities will
not improve.

(ii) Moderate ionization (3% > N_/N > 0.01%)- Most of the theoretical and exper-

imental investigation on noncquilibrium radiation has been conducted in this regime. The

low end, for example, may correspond to a shock velocity of 6.0 km/sec in 1 Torr air and the

high cnd to a shock velocity of 10.0 km/scc into 0.1 Torr air. Spcctral calculation of emitted

nonequilibrium radiation is conducted by many investigators (refs. 1-5, 59 and 66) and com-

pared with the available experimental data. The spectral data primarily have been recorded in

shock tube experiments. The spectra at these conditions consists of NO-J3, N+(1-), N2(2 +)

and N2(1 +) band systems. Typical equilibrium and nonequilibrium spcctra recorded at a

shock velocity of 10 kin/see in 0.1 Torr air (ref. 5) are shown in figures 3 and 4. As illustrated

in figure 1 the nonequilibrium overshoot is very pronounced at these velocities. The ratio of

peak noncquilibrium radiation to the equilibrium radiation (Ip/Ie, fig. 1 (c)), from various

shock tube experiments are plotted in figure 5. Four sets of the data: 1) at 4.75 km/sec in

10 Torr N2, 2) at 5.54 in 3 Torr N2, 3) at 6.4 km/sec in 1 Torr N2, and 4) at 10 km/sec

in 0.1 Torr air, were recorded by Allen et al 1 at AVCO Everett Research Laboratories, MA.

Tile other two sets: 1) at 6.2 km/sec in 1 Tort N2, and at 10 km/sec in 0.1 Torr air, were

recorded by the author and co-workers at NASA Ames (rcf. 4 and 5). AVCO's data were

obtained by integrating the spectral emission data in the 5500-10000 ]k wavelength range and

NASA Ames's data were integrated in the 3100-7100 A range. The computed values for these

conditions using STRAP's two temperature model, T, = _ for chemical nonequilibrium,

also have been plotted in the figure. It should be remembered that for the computation of

radiation STRAP uses NEQAIR, which modcls the electronic states of each species using a

multi-temperature approach. The good agreement between the theory and the experimental

data demonstrate that the physical model presented here simulates the radiation nonequilib-

rium at moderate ionization with reasonable accuracy. It should be noted that the degree of

nonequilibrium enhancement over its equilibrium value increases with increase in the shock

velocity. At a certain shock velocity, most likely between 7 and 9 km/sec (Pl _ 0.1 Torr),

Ip/I,_ achieves a pcak value and starts to drop. At 10 kin/sea in 0.1 Torr air the ratio, Ip/Ie

drops to _ 4.5. It is important to note that at a given velocity the ratio, Ip/I_ is strongly
dependent on thc initial pressure before the shock.
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As discussed before, the "binary scaling law" dictates that the nonequilibrium-to-
equilibrium radiative heat flux definedas

fo °'1 Idt
(see fig. 1)

I_ . t0.1

is a quantity independent of the initial pressure. Experimental values of this heat-flux ratio

as function of shock velocity are compared with the computed values in figure 6. Once again

a good agreement bctween the theory and the experiments is seen.

The ability of the present model to compute detailed spectral radiation is put to test

in figure 7, in which the experimental spectral emission data(refs. 1 and 5) at the point of

peak intensity are compared with the synthetic spectrum produced by the STRAP code. The

spectra are for a shock velocity of 10 km/scc in 0.1 Torr air. The synthetic spectrum is

corrected for the instrument broadening by the input slit. The synthetic spectrum overesti-

mates the emission in the UV (0.3-0.5 #m) range and slightly underestimates in the infrared

(0.55-1.5 #m). The AVCO data show cvcn lower emission in the UV range and higher emission

in the infrared range when compared with the NASA Amcs's data. The overestimate of the

UV emission, which is duc to the N2+(1 -) band system, could be caused by: 1) uncertainty

of total N + population estimates (_ 50%), 2) effect of rotation on the dissociation process,

and 3) the vibrational temperature may be too high. Recently, in temperature measurements

at the point of peak radiation in nitrogcn 4 and in air s it was found that the rotational tem-

perature was considerably lower than the translational temperature (fig. 8). This invalidates

the assumptions TR = T made in STRAP and SPRAP codes and leads us to believe that a

relaxation model for the rotational energy (eq. (6)) should be considered.

The vibrational temperature of the species during the nonequilibrium is another matter

of concern. In figure 9 the vibrational temperature measured by Allen (ref. 77) and by the

Author 4 are plotted against the theoretical prediction for nitrogen (6.2 km/sec, 1 Torr). Two

points should be made regarding this data. First, there is obviously a discrepancy between the

AVCO and The NASA Amcs's data. Sccond, and perhaps more important, the vibrational

temperatures measured at NASA Ames for N2(2 +) and N+(1 -) are different in the same

experiment. This result is not unexpected, since a single vibrational temperature does not

necessarily exists for all species. Most likely the high vibrational states of N + (B2E +) tend to

be in equilibrium with the frcc statc (N+(B2E +) _ N + g+). Park (ref. 50) determined

a vibrational temperature, T_, describing the local equilibrium among high vibrational states

and the free state, to be different from the ground state Tv. T_ computed this way follows

the slow rise in the vibrational temperature measured by AVCO (fig. 9). To summarize, it

can bc stated that in general: 1) two different vibrational temperaturcs may exist, one for

the ground states and another for the higher states, and 2) there may be different sets of two

vibrational temperatures for each of the dominant species.

The discussion of our present capabilities to compute radiation emission from high tem-

perature air can be divided into two subgroups:

a. Equilibrium radiation: The radiation plateau reached after the nonequilibrium over-

shoot is most often believed to be caused by the onset of equilibrium in the gas. In fact, it
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is due to the attainment of a steady state in which the populations in someof the higher
electronic states may still remain much different from those of their equilibrium values. At
low velocities (,--6.0km/sec) the radiative emission from this steady state is not very differ-
cnt fl'om equilibrium air. However,at higher velocities and low densities (_10.0 km/sec) the
differencebecomessignificant. It is interesting to note that this differencebetweenthe steady
state and equilibrium emissionis not uniformly distributed over the entire spectral range. N+
moleculescontributing to the most prominent radiator, the First NegativeBand System,seem
to equilibrate near the plateau and hencethe steadystate and equilibrium emissionsfrom this
band system are nearly the same. It shouldbe noted herethat CN violet radiation cansignif-
icantly alter the appearanceof the N+(1 -) band system, especially the (0,0) band system at
3882.6/_ and the (1,0) band system at 3582.1/_. Experiments (ref. 5) show that equilibrium

radiation from 10 ppm CN impurity in the shock tube can be of the same magnitude as the

emission from the N+(1 -) band system. However, if the level of the impurities is properly

accounted for, the agreement between the experiment and theory is excellent (ref. 78).

On the other hand, at velocities higher than 10.0 km/sec and low densities, NEQAIR

predicts much higher radiative emission from most of the atomic systems than measured

experimentally. The discrepancy between the computations and the experiments does not seem

be uniformly distributed over any particular atomic system, not even in the same multiplet

system. For example, the computed emission from the 4p 4S° ---, 3s4P nitrogen triplet system

at 4151.46, 4143.42 and 4137.63/_ falls, on average, within a factor of 5 of the experimental

data. However, for the 4p4P ° --+ 3s4p multiplct system the computed values average about

50 times higher than the experimental values. Individually, in the 4222.73, 4223.04 and

4224.74 /_ triplet system, the computed values are about 61, 10.2 and 51 times higher than

the experimental data, respectively (ref. 78). This large scatter in the discrepancies between

theory and experiment persists even if a Boltzmann excitation is assumed. Two possible

explanations are proposed:

. NEQAIR assumes that closely packed energy level achieve a local equilibrium during

the relaxation process almost instantaneously and for that reason they are grouped

togethcr to form one pseudo state to simplify the QSS solution. It is possible that

individual states of these multiplet systems, no matter how unlikely it may seem,

populate and relax at different rates than their neighbors. If so, then one must

formulate the QSS problcm by accounting for all the relevant energy levels.

, The published 'f' numbers of the individual states used in NEQAIR may not be

accurate. Most of the 'f' number data are obtained in a high current high pressure

discharge where most spectral lines are broad. In a multiplet system, it is often not

possible to distinguish between the adjacent spectral lines under these experimen-

tal conditions. For simplicity, the contributions of individual lines in the multiplet

system are assumed to be distributed according to the 1-s coupling. The emission

experimental data (ref. 5) under low density high temperature conditions indicate

that this may not bc the case. Also 'f' number measurements are conducted under

high electromagnetic forces. It is not clear how the 'effective' value of 'f' numbers
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will change,if any,under the relatively low ionization found in hypersonic flows. In
any case,'f' numbersof the appropriate energy levelsneedto be investigated further.

Also at velocities above 10 km/scc, the computed valuesof radiative emission from N2,

are a few hundred times less than observed in the experiments. The under prediction from

N2 band systems makes sense in the following way. The molecular populations in certain

electronic states may attain equilibrium with certain electronically excited free states (atoms).

As a result, the code, on one hand overpredicts the atomic radiation and, at the same time,

underpredicts the molecular radiation. This suggests that, in the experiments, the molecular

populations in certain excited electronic states are lower than their equilibrium values and the

atomic populations in certain the excited electronic states are higher. Although, at this stage

the overall population of molecules and atoms are also in equilibrium at the temperature of

equilibration (T = TR ----T v = To), experimental data suggest the distribution of electronic

states still remains far from equilibrium.

b. Nonequilibrium radiation: Emission in the nonequilibrium regime shows nearly the

same behavior. At low velocities and higher densities (for example, at 6.0 kin/see in 1 Torr) the

agreement between the experimental values and the prediction is reasonably good. At higher

velocities and low densities (for example, at 10.2 km/sec in 0.1 Torr) the predicted emission

from the N + band systems also agrees well with the experiments, provided the impurities

like CN are properly accountcd for. The level of impurities added in the computations to

reconcile with the experimental data, however, arc one to two order of magnitude lower than

that required in the equilibrium case.

As in the case of equilibrium radiation, at low densities and higher velocities the code

under predicts the N2 Second Positive and First Positive band systems and over predicts most

of the N and O atomic systems. The code underpredicts the N2 b_nd radiation by about an

order of magnitude and the overprediction of atomic radiation is about an order of magnitude

less than in the equilibrium case. If all the collisions mechanisms are the same as in the

equilibrium regime, radiative decay processes may be playing a dominant role in this regime

and radiative life times may bc comparable with the relaxation times.

Beside the laboratory data, there are a host of flight data against which the nonequilibrium

radiation model has bccn tested. Among the most notable flight data are: 1) Project FIRE 1

(rcf. 11) and FIRE 2 (ref. 12) data, 2) Planetary Experiment Test (PAET) (refs. 10 and 68)

data, 3) Apollo 4 and 6 data (refs. 13 and 14). Flight experiments, unlike laboratory data,

as a rule, provide data on bulk properties, such as integrated heat loads using calorimeters

and radiometers. Apart from the flight altitude conditions (such as temperature, collision

limiting etc.) the data is also affected by the phenomena caused by the vehicle's geometry

(such as truncation, ablation etc.). Also, since the vehicle flies in a real atmosphere, the trace

elements found at the flight altitude may add additional complexit'ies to the radiative heat

transfer such as, observance of CN violet in PAET flights. Therefore, one must take these

physical phenomena into account when analyzing the flight data. When one uses the flight

data to validate or verify the physics of the nonequilibrium radiation, the added affects make

the process more complex and the verification less convincing. At the same time, some of these
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effects,suchas collision limiting and truncation, provide another dimensionin the verification
process.

The FIRE vehicleswere approximately 1/4-scale models of the Apollo command mod-
ule and entered the atmosphereat velocities slightly higher than those of Apollo vehicles.
The vehicleswere made of beryllium and hencenot ablating. The measuredconvectiveheat
transfer agreedwell with the available theories. The radiation data, at low altitudes, were
in agreementwith the equilibrium radiation computations. At higher altitudes, the radiative
heating violated the "binary scaling law" and varied with diminishing density. However, if
one takes "truncation" into account, it is possible to reproduce the flight data for a certain
range of the flight (fig. 10). Due to the small sizeof the vehicle, many phenomena,such as
viscous effects, finite shock thickness, small shockstand-off distance etc., play a role in the
radiative transport. Therefore, only a portion of the flight data can be used to validate the
physical model presentedhere.

Over the years,attempts to reproducethe flight data mentioned herehave beenpartially
successful.The generalconsensusis that the truc extent of nonequilibrium radiation in FIRE
and Apollo experimentswasnot realized at the time.

The preceding comparisonsof experimental data and the theoretical prediction, in the
moderately ionized regime,show that this model is fairly accurate in reproducing most of the
experimental data. The model is reasonablyaccurate in reproducing integrated radiation in-
tensities,and reproducesthe spectral data at low velocitiesand high densitieswith acceptable
accuracy. The model, however,doesonly a fair job of reproducing spectral data obtained in
the ground tests at low density and high velocity.

(iii) High degree of ionization (N_/N > 3%) The radiation emissionin this regime
is dominated by free-freetransitions, bound-free transitions and strong atomic line radiation.
Dependingupon the optical path the atomic line tend to be self-absorbedin the media. Thus,
in a moderately optically thick medium, which is a more realistic scenario for this regime,
complex line by line spatial integration is required. In an optically thick approximation, of
course,only free-freeand bound-freeradiation needto be considered. Therefore,emphasisof
the model in this regime is moreon the accuracyof radiative transport computations than on
the chemicaland/or thermodynamic nonequilibrium model. Becauseof high electron density,
more ctlarge transfer and associative ionization reactions are added to the list of chemical
reaction given in table 1 (ref. 52).

In the highly ionized regimetile nonequilibrium overshootstend to decreasewith increase
in the shock velocity (fig. 5) leading to an undershoot. Such an undershoot can bc seenin
Wilson's work (ref. 78), which is oneof the very few experimental investigations available for
this regime. With the selectionof proper reaction rates (ref. 52), and by accounting for the
allegedimpurities in the experiments, the general trend of Wilson's data can be reproduced
qualitatively by the present model (fig. ll). Sincethe emissionin this regime is proportional
to N_, the plot in figure 11 is shown in terms of Ne2.
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For the verification of computed spectral intensities, reliable and complete experimental
data sets for this regime are not available. Depending upon the integration schemein the
radiative transport bookkeeping,discrepanciesup to severalorders of magnitude have been
found in the spectral intensities. Even the integrated radiation heat flux, which under the
"binary scaling law, " should be density independent, hasbeen found to scatter as much as
oneorder of magnitude, dependingon the method of computation. With a concertedeffort in
radiative transport integration techniquesand the acquisitionof reliable and completespectral
and integrated radiation data, our computational capabilities for this regimewill be improved.

B. Martian Atmosphere

The Martian atmosphereconsistsof 95.7% CO2, 2.7%N2 and 1.6%Ar (rcf. 79). There-

fore, a shock layer in the Martian atmosphere will contain C, CO, C2 and CN, all of which

have mechanisms for strong radiation. Of particular interest are the Fourth positive system of

CO, the Red and Violet systems of CN, the Swan system of C2, and atomic lines of C and O.

Reaction rates for various dissociation, ionization and vibrational relaxation of CO2, CO and

N2 are available in the literature (rcfs. 80-84). Fair amounts of theoretical and experimental

data on the vibrational relaxation of various mixtures of CO2 and CO have been made. The

observed relaxation can be represented with reasonable accuracy by Millikan and White for-

mula. A considerable amount of experimental data, valid for temperatures upto 15, 000 K,

exist (refs. 82 and 83) on dissociation of CO2, CO and CN and on exchange reactions contain-

ing these gases. Most of the high temperature experimental data are available for collisions

with argon. The rates for collisions with other molecules and atoms are assumed (ref. 82)

to be about 10 and 15 times higher than that measured in argon, respectively. Using these,

tentative reaction rates applicable to Martian atmosphere can be compiled (sec ref. 52).

The entry velocity into the Martian atmosphere range from 6-9 km/sec. No kinetic or

radiation measurements have yet been made in the Martian gas mixtures. However, some

theoretical and experimental investigations (ref. 85-91) have been made in various mixtures

of CO2, CO and N2. These data can bc used to assess the present model for calculation in

the Martian atmosphere. In figure 12, the calculated equilibration distance (distance traveled

in time t0.1, fig. 1), reproduced here from reference 52, is shown and compared with the

cxperimental data and other theoretical predictions for a post shock pressure of 0.15 atm.

The prediction from reference 52 seems to agree with the experimental data of Arnold and

Nicholls (ref. 86) approaching the mean value of Nealy's data (ref. 88). Also it agrees with

Howe's (ref. 89) theoretical prediction.

The computed values of radiative heat flux have been found to be very sensitive to line

shapes of the transitions. In an optically thick environment, if one assumes a thin line,

its center region, which contains most of the radiative energy, is self absorbed and the net

radiative energy to the wall, contributed by the wings of the line, is bound to be smaller than

in an optically thin gas. Howcvcr, if one assumes a thick line, due to the smearing effect, the

integrated area under the wings becomes appreciably larger than the thin line case. As a result,

the computations estimate a larger heat flux to the wall under the thick line assumption.
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Computations show that for flight velocity of 6-9 km/sec, the predicted equilibration
distance varies between 9 and 27 cm. Thus, computations of the radiative heat load on an
cntry vehicle whose shock stand off distance is in the 9-27 cm range (or less), require the
nonequilibrium radiation model. An cquilibrium model will under predict the radiative heat
load in thosecases.

C. Titan Atmosphere

The atmosphere of Titan is known to be composed of molecular nitrogen, methane, hy-

drogen and possibly argon. However, the specific mole fractions of the constituents are not

well known (ref. 92). For the heat load analysis (ref. 72), a composition of 95.7% N2, 3.0%

CH4, 1% argon and 0.3% hydrogen and an entry velocity in the range of 5-7 km/sec has been

assumed. Under these conditions CN will readily be formed and is considered the dominant

radiator along with minor contributions from C2 Swan band system. A list of chemical reac-

tions and the reaction rates needed for the computations of radiative heating load in Titan's

atmosphere has been compiled by C.P. Park (ref. 72) and Nelson (ref. 73). C. P. Park also

conducted emission measurements in a shock tube. He produced the CN emission data using

a three temperature (T, Tv and Te) and the average temperature Ta = _ model for the

chemical processes and a modified NEQAIR code for the radiation calculations.

CONCLUSIONS

Based on our current understanding of the nonequilibrium phenomena, our computing

capability, and the role of radiative transport and the thermochemistry in the physical model,

we may divide the hypersonic flows into three groups: 1) low ionization flows, Ne/N < 0.01%,

2) moderate ionization flows, 3% < N_/N < 0.01%), and 3) highly ionized flows.

Our basic understanding of noncquilibrium radiation in the low ionization flows is rather

poor. The role of heavy particles in electronic excitation and the coupling between the vi-

brational and electronic energy modes are, especially, not well understood. There is evidence

that the published data on 'f' nmnbers for certain transitions may not bc applicable to the

regime of hypersonic flow. Also it seems that the QSS formulations performed for computing

radiative emission (or absorption) must be extended to a larger number of energy levels. The

experimental data being gathered at the E.A.S.T. Facility of NASA Ames Research Center

have a wealth of information on these radiative processes. A thorough analysis of the data will

improve our understanding of the relevant mechnisms leading to tile development of improved
codcs.

The flows with moderate ionization are the most researched, and most understood. The

spectral emission radiation for this regime can be computed with reasonable accuracy. The

computed total integrated radiative heat flux from the shock layer for this regime agrees

well with the shock tube, ballistic range and, in most cases, flight data. Other parameters,
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suchas the relaxation time and equilibration distance are also in good agreementwith the
experimental data.

Our ability to computethe nonequilibrium radiation from highly ionizedflows is alsopoor.
The problem lies, not as much in the basic understanding of the physics involved, but in the
complex bookkeeping of the radiative transport phenomena. Due to the significant degree
of radiative cooling, radiative transport calculations must be done with improved accuracy.
Also, reliable experimental data against which the computations can be verified, are limited
in number. A low density shock tube facility is under developmentat the E.A.S.T. Facility of
NASA Ames ResearchCenter to addressthis problem.

The computation of radiation from planetary atmospheresother than air is, in princi-
ple, within our present day capabilities, since these flows fall into one of the last two cate-
gories: moderately and highly ionized. Experimental data, however,areneededfor verification
purpose.
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Table I. Reaction ratecoemcientsforair;Tz isthe controllingtemperature, C isin cm3mole -is.-t

M Tz C n T, Experimental data
available?

DissociationReactions

N2+M --,N+N+M N To 3,022 -1.60 113200 yes
0 3.0 _2 no

N2 7.021 yes
02 7.021 no

NO 7.0_I no
N + 3.022 no

O + 3.022 no

N + 7.021 no

O_ 7.021 no

NO + 7.021 no

e- 1.225 no

O2+M "-',"O+O+M N T, 1.022 -1.50 59500 no

O 1.022 yes
N2 2.02] yes

O:] 2.021 yes

NO 2.021 no

N + 1.022 no

O + 1,022 no

N + 2.02[ no

0 + 2.02[ no
NO + 2.02t no

NO+M _ O+O+M N Ta 1.1 lr 0.00 75500 no

O 1.1 tr no

N2 5.0 t5 no
02 5.0 ts no

NO 1.1 IT yes
N + 1.1 IT no
O + 1.1lz no

N + 5.0Is no

O_ 5.0Is no

NO + 5.015 no

NO Exchange Reactions

NO+O --_ N+O2 T 8.4 t2 0.00 19450 yes

N2+O -. NO+N T 6.4 tz -1.00 38400 yes

Associative Ionization Reactions

N+O---,NO+ +e - T 8.88 1.00 31900 yes

O+O---,O_ +e- T 7.1_ 2.70 80600 yes
N+N_N_'+e- T 4.4z 1.50 67500 yes

Charge Exchange Reactions

NO++O--,N++O2 T 1.012 0.50 77200 yes

N++N2_N++N T 1.012 0.50 12200 no
O++N--N++O2 T 8.7 [3 0.7 28600 yes

O++NO--N++O2 T 1.45 1.90 26600 yes

O++N2---,N++O2 T 9.912 0.00 40700 yes

0 2_"+O--,O+ +O2 T 4.012 -0.09 18000 yes
NO++N--.O++N2 T 3.4 la -1.08 . 12800 yes

NO++O2_O++NO T 2.4 t3 0.41 32600 yes

NO++O_O++N T 7.2 t2 0.29 48600 yes

0++N2---,N+ +O T 9.1H 0.36 22800 yes

NO++N--N++O T 7.2 la 0.00 35500 yes

3O



Tz C n Wd Experimental data
available ?

Electron-Impact Ionization Reactions

O+e- ---*O+ +e - +e- Te 3.933 -3.78 158500 no

N+e- --_N+ +e - +e- T_ 2.5 a4 -3.82 168600 yes

Radiative Recombination Reactions

O++e----,O+hv Te 1.07 II .-0.52 no

N++e---*N+hv Te 1.5211 -0.48 no

Flow

Vehicle

Shock body

_ Raiiation _,_mline_

Nonequllibrlum Equilibrium

E
..u

O
C

,.J

•_------ to. 1

tp _--

1'11e I T_

i liP

? / q=qne + qe

Time, OR X

Figure 1. Concepts of nonequilibrium radiation: 1) shock layer, 2) approximate temperature

profiles, and 3) nonequilibrium radiation characteristics.
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Figure 5. Ratio of peak nonequilibrium radiation to the equilibrium radiation as recorded in

various shock tube experiments.
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COMPARISON BETWEEN CALCULATED AND MEASURED
SPECTRA AT PEAK-RADIATION POINT

P= = 0.1 torr, V_ = 10 km/sec
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Figure 7. Nonequilibrium spectral emission data compared with the synthetic spectrum.
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Figure 8. The measured rotational temperature compared with the AVCO data (ref. 77)

and with the theoretical values computed by Park (ref. 59) using a) average temperature,

b) vibrational temperature, and c) translational temperature.
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Figure 9. The measured vibrational temperature compared with the AVCO data (ref. 77)

and with the theoretical values computed by Park (ref. 59) using a) average temperature,

b) vibrational temperature, and c) translational temperature.
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Figure 11.
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